
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 6: Synchronization Tools

Outline

Silberschatz, Galvin and Gagne ©20186.2Operating System Concepts – 10th Edition

▪ Background
▪ The Critical-Section Problem
▪ Peterson’s Solution
▪ Hardware Support for Synchronization
▪ Mutex Locks
▪ Semaphores
▪ Monitors

Objectives

Silberschatz, Galvin and Gagne ©20186.3Operating System Concepts – 10th Edition

▪ Describe the critical-section problem and illustrate a race condition

▪ Illustrate hardware solutions to the critical-section problem using
memory barriers, compare-and-swap operations, and atomic variables

▪ Demonstrate how mutex locks, semaphores, monitors, and condition
variables can be used to solve the critical section problem

Background

Silberschatz, Galvin and Gagne ©20186.4Operating System Concepts – 10th Edition

▪ Processes can execute concurrently

• May be interrupted at any time, partially completing execution

▪ Shared memory is a method of IPC.

▪ Concurrent access to shared data may result in data inconsistency

▪ Maintaining data consistency requires mechanisms to ensure the orderly
execution of cooperating processes

Shared Memory

• One process will create an area in RAM which
the other process can access

• Both processes can access shared memory like
a regular working memory
– Reading/writing is like regular reading/writing
– Fast

• Limitation: Error prone. Needs synchronization
between processes

Process 1

Process 2

Shared
memory

userspace

Silberschatz, Galvin and Gagne ©20186.5Operating System Concepts – 10th Edition

Motivation Example

Silberschatz, Galvin and Gagne ©20186.6Operating System Concepts – 10th Edition

Example: Producer-Consumer Problem

▪ producer process produces information that is consumed by a consumer
process

• unbounded-buffer places no practical limit on the size of the buffer

• bounded-buffer assumes that there is a fixed buffer size

Bounded Buffer Producer-Consumer

…
0 1 2 n-1

producer in
consumer out
Buffer is circular

inout

Producer Code

while (true) {

//produce an item and put in nextProduced

while (counter == BUFFER_SIZE);

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

counter++;

//do nothing

}

Consumer Code

while (true) {

while (counter == 0); // do nothing
nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;
counter--;

//consume the item in nextConsumed
}

6.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Single and Multithreaded Processes

counter == ?

#define BUFFER_SIZE 1000;
int buffer[BUFFER_SIZE];
int counter = 0;

main()

ThreadA (Producer)

increment()
while (true) {

while (counter == BUFFER_SIZE);
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}

Thread B (Consumer)

decrement()
while (true) {

while (counter == 0);
nextConsumed = buffer [out];
out = (out + 1) % BUFFER_SIZE;
counter--;

}

Motivating Scenario

• Single core
– process 1 and process 2 are executing at the same time but sharing a

single core

{
*
*

counter++
*

}

*
*

counter--
*

}

P1

shared variable
int counter = 5;

{

1 2 1 2 1 2 1 2

CPU usage wrt time

14

P2

Motivating Scenario

• What is the value of counter?
– expected to be 5

– but could also be 4 and 6

{
*
*

counter++
*

}

*
*

counter--
*

}

shared variable
int counter = 5;

{

15

P1 P2

Race Condition
counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

□ Consider this execution interleaving with “counter = 5” initially:

□ Assume both producer and consumer reach the counter variable at the same time:
P0::S0: producer execute register1 = counter

P0::S1: producer execute register1 = register1 + 1

{register1 = 5}

{register1 = 6}

{register2 = 5}

{register2 = 4}

{counter = 4}

{counter = 6}

P1::S2: consumer execute register2 = counter

P ::S3: consumer execute register2 = register2 – 11

P1::S4: consumer execute counter = register2

P0::S5: producer execute counter = register1

Time Out
Switching
From P0

to P1

Motivating Scenario

{
*
*

counter++
*

}

*
*

counter--
*

}

Shared variable

int counter = 5;

{

R1 counter
R1 R1 + 1
counter R
R2 counter
R2 R2 - 1
counter R2

counter = 5

context
switch

R1 counter
R2 counter
R2 R2 - 1
counter R2
R1 R1 + 1
counter R1

counter = 6

R2 counter
R1 counter

R1 R1 +1
counter R1
R2 R2 - 1
counter R2

counter = 4

17

P1 P2

Race Condition

□ We would arrive at this incorrect state because we allowed both processes to
manipulate the variable counter concurrently

□ Race Condition

□ When several processes access and manipulate the same data concurrently and the
outcome of the execution depends on the particular order in which the access takes
place

□ Synchronization

□ To ensure that only one process at a time can be manipulating the same data

Race Conditions
• Race conditions

– A situation where several processes access and manipulate the same data
(critical section)

– The outcome depends on the order in which the access take place

– Prevent race conditions by synchronization
• Ensure only one process at a time manipulates the critical data

{
*
*

counter++
*

}

critical section

No more than one process should
execute in critical section at a time

19

Race Conditions in Multicore

• Multi core
– Process 1 and process 2 are executing at the same time on different cores

{
*
*

counter++
*

}

{
*
*

counter--
*

}

P1 P2int counter = 5;

1
2

CPU usage wrt time

20

shared variable

6.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Critical Section Problem

▪ Consider system of n processes {p0, p1, … pn-1}

▪ Each process has critical section segment of code

• Process may be changing common variables, updating table, writing
file, etc.

• When one process in critical section, no other may be in its
critical section

▪ Critical section problem is to design protocol to solve this

▪ Each process must ask permission to enter critical section in entry
section, may follow critical section with exit section, then remainder
section

The Critical-Section Problem

do {

entry section

critical section

exit section

remainder section

} while (TRUE);

Critical-Section Problem (Cont.)

Silberschatz, Galvin and Gagne ©20186.24Operating System Concepts – 10th Edition

Requirements for solution to critical-section problem

1. Mutual Exclusion - If process Pi is executing in its critical section, then no
other processes can be executing in their critical sections. (No more than
one process in critical section at a given time)

2. Progress - If no process is executing in its critical section and there exist
some processes that wish to enter their critical section, then the selection
of the process that will enter the critical section next cannot be postponed
indefinitely. (When no process is in the critical section, any process that
requests entry into the critical section must be permitted without any delay)

3. Bounded Waiting (no starvation) - A bound must exist on the number of
times that other processes are allowed to enter their critical sections after
a process has made a request to enter its critical section and before that
request is granted. (There is an upper bound on the number of times a
process enters the critical section, while another is waiting)

Three Requirements for a Solution

Silberschatz, Galvin and Gagne ©20186.25Operating System Concepts – 10th Edition

▪ Any solution to the critical section problem must satisfy three
requirements:

▪ Mutual Exclusion: If a process is executing in its critical section, then
no other process is allowed to execute in the critical section.

▪ Progress: If no process is executing in the critical section and other
processes are waiting outside the critical section, then only those
processes that are not executing in their remainder section can
participate in deciding which will enter in the critical section next, and
the selection can not be postponed indefinitely.

▪ Bounded Waiting: A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before that
request is granted.

Solutions to Critical-Section Problem

□ Software-based solutions

□ Hardware-based solutions

□ Operating system solution (semaphore)

□ Programming languages solution (monitor)

Software-based solutions

□ Unfortunately, there are no guarantees that software-
based solution work correctly on modern architectures
□ Because of the way modern architectures perform basic machine-language

instructions, such as load and store

□ We present theses solutions because
□ They provides a good algorithmic description of solving the

critical-section problem

□ Illustrates some of the complexities involved in designing
software that addresses the requirements

Turn-based Solution

□ Assumptions
□ There are only two processes: P0 andP1

□ The LOAD and STORE instructions are atomic; that is, cannot be
interrupted

□ The two processes share a variable turn
□ int turn;

□ The variable turn indicates whose turn it is to enter the
critical section

Turn-based Solution

□ Algorithm for process Pi

do {

while (turn == j);

critical section

turn = j;

remainder section

} while (TRUE);

□ Problem

□ What happened if a process wants to enter the critical section again,
before the other one needs to enter?

□ The solution does not meet the Progress requirement

6.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Correctness of the Software Solution

▪ Mutual exclusion is preserved

Pi enters critical section only if:

turn = i

and turn cannot be both 0 and 1 at the same time

▪ What about the Progress requirement? No

▪ What about the Bounded-waiting requirement? Yes

Flag-based Solution

□ The two processes share a variable flag

□ boolean flag[2];

□ The flag array is used to indicate if a process is ready to enter the critical

section.

□ flag[i] = true implies that process Pi is ready!

Flag-based Solution

□ Algorithm for process Pi

do {

flag[i] = TRUE;

while (flag[j]);

critical section

flag[i] = FALSE;

remainder section

} while (TRUE);

□ Problem
□ What happened if both processes want to enter the critical section at

the same time, and both set their flags true, before entering the
critical section

□ The solution does not meet the Progress requirement.

Peterson’s Solution

□ Algorithm for process Pi

do {

flag[i] = TRUE;

turn = j;

while (flag[j] && turn == j);

critical section

flag[i] = FALSE;

remainder section

} while (TRUE);

□ Provable that all requirements are satisfied but works for only two
processes => Bakery algorithm was proposed, but it was too
complex to check the entry section => hardware solutions

Peterson’s Solution

Silberschatz, Galvin and Gagne ©20186.34Operating System Concepts – 10th Edition

▪ Two process solution

▪ Assume that the load and store machine-language instructions
are atomic; that is, cannot be interrupted

▪ The two processes share two variables:
• int turn;

• boolean flag[2]

▪ The variable turn indicates whose turn it is to enter the critical section

▪ The flag array is used to indicate if a process is ready to enter the
critical section.

• flag[i] = true implies that process Pi is ready!

Correctness of Peterson’s Solution

Silberschatz, Galvin and Gagne ©20186.35Operating System Concepts – 10th Edition

▪ Provable that the three CS requirement are met:

1. Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

Peterson’s Solution and Modern Architecture

Silberschatz, Galvin and Gagne ©20186.36Operating System Concepts – 10th Edition

▪ Although useful for demonstrating an algorithm, Peterson’s Solution is not
guaranteed to work on modern architectures.

• To improve performance, processors and/or compilers may reorder operations
that have no dependencies

▪ Understanding why it will not work is useful for better understanding race
conditions.

▪ For single-threaded this is ok as the result will always be the same.

▪ For multithreaded the reordering may produce inconsistent or unexpected
results!

29

Bakery Algorithm

http://research.microsoft.com/en-us/um/people/lamport/pubs/bakery.pdf

wait your turn!!

eat
when 196 displayed

• Synchronization between N > 2 processes

• By Leslie Lamport

30

Simplified Bakery Algorithm

• Processes numbered 0 to N-1

• num is an array N integers (initially 0).
– Each entry corresponds to a process

lock(i) {
num[i] = MAX(num[0], num[1], …., num[N-1]) + 1
for(p = 0; p < N; p++) {

while (num[p] != 0 and num[p] < num[i]);
}

}

unlock(i) {
num[i] = 0;

}

critical section
This is at the doorway!!!
It has to be atomic
to ensure two processes
do not get the same token

https://www.youtube.com/watch?v=3pUScfud9Sg

31

Original Bakery Algorithm

•

•

Without atomic operation assumptions

Introduce an array of N Booleans: choosing, initially all values False.

lock(i){
choosing[i] = True
num[i] = MAX(num[0], num[1], …., num[N-1]) + 1
choosing[i] = False
for(p = 0; p < N; p++) {

while (choosing[p]);
while (num[p] != 0 and (num[p], p) < (num[i], i));

}
}

critical section

unlock(i) {
num[i] = 0;

}

(a, b) < (c, d) which is equivalent to: (a < c) or ((a == c) and (b < d))

Choosing ensures that a process
is not at the doorway

doorway

Silberschatz, Galvin and Gagne ©20186.40Operating System Concepts – 10th Edition

Silberschatz, Galvin and Gagne ©20186.41Operating System Concepts – 10th Edition

6.43 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Synchronization

Hardware Solutions

Solution Using Locks

□ Race conditions are prevented by requiring that critical regions be
protected by locks
□ A process must acquire a lock before entering a critical section; it releases

the lock when it exits the critical section

□ Unfortunately, the design of such locks can be quite sophisticated.

do {
acquire lock

critical section
release lock

remainder section
} while (TRUE);

Hardware-based Solutions

□ Hardware features can make any programming task easier
and improve system efficiency

□ Many systems provide hardware support for critical section
code
□ Disabling interrupts

□ Test and Set instruction

□ Exchange instruction

Disabling interrupts

do {

Disable interrupt

critical section

Enable interrupt

remainder section

} while (TRUE);

□ Critical section code would execute without preemption

□ Only works in uniprocessor systems
□ Generally too inefficient on multiprocessor systems

Hardware Instructions

Silberschatz, Galvin and Gagne ©20186.47Operating System Concepts – 10th Edition

▪ Special hardware instructions that allow us to either test-and-modify the
content of a word, or two swap the contents of two words atomically
(uninterruptedly.)

• Test-and-Set (TSL) instruction

• Compare-and-Swap instruction

Test and Set Instruction

□ Modern machines provide special atomic hardware instruction
to test and modify the content of a word atomically.

□ that is, as one uninterruptible unit (atomic)

The test_and_set Instruction

Silberschatz, Galvin and Gagne ©20186.49Operating System Concepts – 10th Edition

▪ Definition
boolean test_and_set(boolean *target)

{

boolean rv = *target;

*target = true;

return rv:

}

▪ Properties

• Executed atomically (uninterruptible unit)

• Returns the original value of passed parameter

• Set the new value of passed parameter to true

Test and Set Instruction

□ Algorithm for process Pi

boolean lock = FALSE; //shared variable between all processes

do {

while (TestAndSet (&lock)) ;

critical section

lock = FALSE;

remainder section

} while (TRUE); boolean TestAndSet(boolean *target)
{

boolean rv = *target;
*target = true;
return rv:

}

Does lock and test solve the critical-section problem?
No, bounded-waiting is not met

Swap Instruction

□ Swap contents of two memory words atomically

□ Algorithm for process Pi

boolean lock = FALSE; // shared variable between all processes

// local variable for each processboolean key;

do {

key = TRUE;
while (key == TRUE) swap(&lock, &key);

critical section

lock = FALSE;

remainder section

} while (TRUE);

A Bounded-waiting Solution

□ Hardware-based solutions do not satisfy the bounded-waiting requirement

do {

waiting[i] = TRUE;

key = TRUE;

while (waiting[i] && key)
key = TestAndSet(&lock);

waiting[i] = FALSE;

critical section
j = (i + 1) % n;
while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)
lock = FALSE;

else

waiting[j] = FALSE;

remainder section
} while (TRUE);

Semaphore

□ A synchronization tool which is provided by OS

□ A semaphore S is an integer variable that, apart from initialization, is

accessed only through two standard atomic operations

□ wait() or P()

□ signal() or V()

signal(S) {
S++;

}

wait(S) {
while (S <=0);
S--;

}

Mutual Exclusion using Semaphores

Semaphore mutex;

do {

wait (mutex);

// initialized to 1

critical Section

signal (mutex);

remainder section

} while (TRUE); signal(S) {
S++;

}

wait(S) {
while (S <=0);
S--;

}

Semaphore

□ Types of semaphores

□ Binary semaphore – integer value can range only between 0 and 1; can be

simpler to implement

■ Also known as mutex locks (Silberschatz definition)

□ Counting (general) semaphore – integer value can range over an

unrestricted domain

□ Binary semaphores can be used to deal with the critical-section

problem (See next slide)

□ Counting semaphores can be used to control access to a given resource
consisting of a finite number of instances (See producer- consumer
solution using semaphores)

Semaphore Implementation

□ Main disadvantage: busy waiting
□ While a process is in its critical section, any other process that tries to

enter its critical section must loop continuously in the entry code

□ This type of semaphore is also called a spinlock because the
process "spins" while waiting for the lock

□ Spinlocks do have an advantage in that no context switch is required
when a process must wait on a lock

□ Thus, when locks are expected to be held for short times, spinlocks

are useful

Semaphore Implementation

□ To overcome the need for busy waiting, we can modify the definition of the

wait() and signal()

□ With each semaphore there is an associated waiting queue

□ Two operations are provided by the operating system as basic system calls

□ block place the process invoking the operation on the appropriate waiting queue

and switch it to blocked state

□ wakeup remove one of processes in the waiting queue and place it in the ready

queue

Semaphore Implementation
struct semaphore {

int value;

queueType queue;

}

//a waiting queue of blocked processes

signal(semaphore S) {
S.value ++;

if (S.value <= 0) {
remove a process P from S.queue;
wakeup(P);

}

}

wait(semaphore S) {
S.value --;

if (S.value < 0) {
add this process to S.queue;
block();

}
}

Semaphore Implementation

Semaphore Implementation

□ Must guarantee that no two processes can execute wait() and signal()

on the same semaphore at the same time

□ Thus, implementation becomes the critical section problem where the

wait and signal code are placed in the critical section

□ Could now have busy waiting in critical section implementation

□ But implementation code is short

□ Thus, the critical section is almost never occupied, and busy waiting occurs

rarely, and then for only a short time.

Deadlock and Starvation

□ Deadlock: two or more processes are waiting indefinitely for an event that

can be caused by only one of the waiting processes

□ Let S and Q be two semaphores initialized to 1

P0

wait (S);
wait (Q);

…
signal (S);
signal (Q);

P1

wait (Q);
wait (S);
…

signal (Q);
signal (S);

□ Starvation or indefinite blocking: a situation in which processes wait

indefinitely within the semaphore.

Classic Problems of Synchronization

□ We present a number of synchronization problems as examples of a large

class of concurrency-control problems

□ Classical problems used to test newly-proposed synchronization

schemes

□ Examples

□ Producer-Consumer (Bounded-Buffer) Problem

□ Readers and Writers Problem

□ Dining-Philosophers Problem

Producer-Consumer Problem

□ N buffers, each can hold one item

□ Semaphore mutex provides mutual exclusion for accesses to the buffer

pool, initialized to the value 1

□ Semaphore full counts the number of full buffers, initialized to the

value 0

□ Semaphore empty counts the number of empty buffers, initialized to the

value N

Producer-Consumer Problem

Producer:

do {
//produce an item in nextp
wait (empty);
wait (mutex);

//add the item to the buffer

signal (mutex);
signal (full);

} while (TRUE);

Consumer:
do {

wait (full);
wait (mutex);

//remove an item from buffer to nextc

signal (mutex);
signal (empty);

//consume the item in nextc

} while (TRUE);

Readers-Writers Problem

□ A data set is shared among a numberof concurrent processes

□ Readers: only read the data set

□ Writers: can both read and write

□ Problem

□ Allow multiple readers to read at the same time

□ Only one single writer can access the shared data at the same time (no

other reader or writer)

□ Some systems provides reader-writer locks to the users

□ Several variations of how readers and writers are treated, all involve

priorities

Readers-Writers Problem

□ First readers-writers problem

□ No reader should wait for other readers to finish simply because a
writer is waiting

□ Second readers-writers problem

□ If a writer is waiting to access the object, no new readers may start
reading

□ Shared Data
□ Semaphore mutex initialized to 1
□ Semaphore wrt initialized to 1
□ Integer readcount initialized to 0

First Readers-Writers Problem

Writer:
do {

wait (wrt);
//writing is performed
signal (wrt);

} while (TRUE);

Reader:

do {
wait (mutex);
readcount ++;
if (readcount == 1)

wait (wrt);
signal (mutex);
// reading is performed
wait (mutex);
readcount--;
if (readcount == 0)

signal (wrt);
signal (mutex);

} while (TRUE);

The Dining-Philosophers Problem

□ Consider five philosophers spend their lives thinking and eating

□ From time to time, a philosopher gets hungry and tries to pick up the two chopsticks

that are closest to her (one at a time) to eat from bowl

□ Need both to eat, then release both when done

The Dining-Philosophers Problem

□ A simple solution: one semaphore for each chopstick
□ Semaphore chopstick[5] initialized to 1

□ The structure of philosopher i
do {

wait (chopstick[i]);
wait (chopstick[(i + 1) % 5]);

// eating
signal (chopstick[i]);
signal (chopstick[(i + 1) % 5]);

// thinking
} while (TRUE)

The Dining-Philosophers Problem

□ Problem
□ Deadlock

□ Suppose that all five philosophers become hungry simultaneously

□ Solutions
□ Allow at most four philosophers to sit around the table

□ Allow a philosopher to pick up her chopsticks only if both chopsticks are

available

□ Use an asymmetric solution
■ An odd philosopher picks up first her left chopstick
■ An even philosopher picks up first her right chopstick

Problems with Semaphores

□ Incorrect use of semaphore operations

□ Example: semaphore solution to the CS problem

□ signal (mutex) …. wait (mutex) ME is violated

□ wait (mutex) … wait (mutex) Deadlock

□ Omitting of wait (mutex) or signal (mutex) (or both)

□ Solution
□ Monitors:A high-level abstraction that provides a convenient and

effective mechanism for process synchronization

Monitors

□ The monitor is a programming-language construct that provides

equivalent functionality to that of semaphores and that is easier to control.

□ Implemented in a number of programming languages, including

□ Concurrent Pascal, Modula-2 and 3, C# and Java

□ Monitor is an abstract data type which consists of

□ Internal (private) variables

□ Procedures (public methods)

Monitors

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

…

procedure Pn (…) {……}

initialization code (…) { … }

}

□ There are two important characteristics

□ Local variables are accessible only by the local methods

□ Only one process may be executing in the monitor at a time

Producer-Consumer Problem

Producer:

do {
//produce an item in nextp

wait (empty);

wait (mutex);

//add the item to the buffer

signal (mutex);

signal (full);

} while (TRUE);

Consumer:
do {

wait (full);
wait (mutex);

//remove an item from buffer to nextc

signal (mutex);
signal (empty);

//consume the item in nextc

} while (TRUE);

Monitors

□ Mutual Exclusion can be achieved by this construct

□ But it is not powerful enough to model some synchronization schemes

□ We need to define additional synchronization mechanisms: condition

variables

□ Example: condition x, y;

□ There are Two operations on a condition variable:
□ x.wait() – a process that invokes the operation is suspended on condition

x until another process invokes x.signal()

□ x.signal() – resumes exactly one suspended process on x

■ If no process is suspended, then the signal() operation has no effect

Monitors

Producer-Consumer with Monitors

monitor ProducerConsumer {

int buffer[N];
int count, in, out;
condition empty, full;

void produce(int nextp) {

if (count == N) full.wait();

buffer[in] = nextp;

in = (in + 1) % N;
count = count + 1;
If (count == 1) empty.signal();

}

Producer-Consumer with Monitors

int consume() {

int nextc;
if (count == 0) empty.wait();

nextc = buffer[out];
out = (out + 1) % N;
count = count - 1;
If (count == N - 1) full.signal();
return (nextc);

}

initialization_code() {
count = in = out = 0;

}
}

Producer-Consumer with Monitors

monitor ProducerConsumer pc;

Producer:

do {
// produce an item in nextp
pc.produce(nextp);

} while (TRUE);

Consumer:
do {

nextc = pc.consume();
// consume the item in nextc

} while (TRUE);

Dining-Philosophers with Monitors

monitor dp {

enum {THINKING, HUNGRY, EATING} state[5];

condition self[5];

void pickup(int i) { // philosopher i

state [i] = HUNGRY;
test(i); // check if the two neighbors are eating or not

if (state[i] != EATING)

self[i].wait();

}

Allow a philosopher to pick up her chopsticks only if both chopsticks are available

Dining-Philosophers with Monitors

void putdown(int i) {
state [i] = THINKING;
test((i + 4) % 5);

test((i + 1) % 5);
}

void test(int i) {
if ((state [(i + 4) % 5] != EATING) &&

(state [i] == HUNGRY) &&
(state [(i + 1) % 5] != EATING)) {

state[i] = EATING;
self[i].signal();

}
}

Dining-Philosophers with Monitors

initialization-code () {
for (int i = 0; i < 5; i++)

state[i] = THINKING;
}

} // end monitor dp

philosopher i:
do {

…
dp.pickup(i);
…
dp.putdown(i);

} while (TRUE);

Condition Variables Choices

□ If process P invokes x.signal(), with Q in x.wait() state, what

should happen next?

□ If Q is resumed, then P must wait

□ Options include

□ Signal and wait (Hoare) – P immediately leaves the monitor

(blocked), Q is resumed

□ Signal and continue (Lampson/Redell) – P continues and Q waits

until P leaves the monitor or waits for another condition

Condition Variables Choices

□ Both have pros and cons – language implementer can decide

□ The Producer-Consumer code is written for Hoare’s proposal

□ For Lampson/Redell’s method, we should replace

□ if (count == N) full.wait(); with while (count == N) full.wait();

□ And we should do the same for consume()

Further Reading

□ A solution to Dining Philosophers using semaphores/monitors (without

deadlock)

□ Implementing a monitor using semaphores

□ Synchronization examples in Solaris, Windows 10 and Linux

□ Producer-Consumer using message passing (Stallings)

□ A solution to the Readers/Writers problem using semaphore:

readers/writers have priority (Stallings)

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 6

